3.81 \(\int \cos ^5(a+b x) \sin ^4(a+b x) \, dx\)

Optimal. Leaf size=46 \[ \frac{\sin ^9(a+b x)}{9 b}-\frac{2 \sin ^7(a+b x)}{7 b}+\frac{\sin ^5(a+b x)}{5 b} \]

[Out]

Sin[a + b*x]^5/(5*b) - (2*Sin[a + b*x]^7)/(7*b) + Sin[a + b*x]^9/(9*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0356168, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {2564, 270} \[ \frac{\sin ^9(a+b x)}{9 b}-\frac{2 \sin ^7(a+b x)}{7 b}+\frac{\sin ^5(a+b x)}{5 b} \]

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]^5*Sin[a + b*x]^4,x]

[Out]

Sin[a + b*x]^5/(5*b) - (2*Sin[a + b*x]^7)/(7*b) + Sin[a + b*x]^9/(9*b)

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \cos ^5(a+b x) \sin ^4(a+b x) \, dx &=\frac{\operatorname{Subst}\left (\int x^4 \left (1-x^2\right )^2 \, dx,x,\sin (a+b x)\right )}{b}\\ &=\frac{\operatorname{Subst}\left (\int \left (x^4-2 x^6+x^8\right ) \, dx,x,\sin (a+b x)\right )}{b}\\ &=\frac{\sin ^5(a+b x)}{5 b}-\frac{2 \sin ^7(a+b x)}{7 b}+\frac{\sin ^9(a+b x)}{9 b}\\ \end{align*}

Mathematica [A]  time = 0.110989, size = 37, normalized size = 0.8 \[ \frac{\sin ^5(a+b x) (220 \cos (2 (a+b x))+35 \cos (4 (a+b x))+249)}{2520 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]^5*Sin[a + b*x]^4,x]

[Out]

((249 + 220*Cos[2*(a + b*x)] + 35*Cos[4*(a + b*x)])*Sin[a + b*x]^5)/(2520*b)

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 68, normalized size = 1.5 \begin{align*}{\frac{1}{b} \left ( -{\frac{ \left ( \sin \left ( bx+a \right ) \right ) ^{3} \left ( \cos \left ( bx+a \right ) \right ) ^{6}}{9}}-{\frac{\sin \left ( bx+a \right ) \left ( \cos \left ( bx+a \right ) \right ) ^{6}}{21}}+{\frac{\sin \left ( bx+a \right ) }{105} \left ({\frac{8}{3}}+ \left ( \cos \left ( bx+a \right ) \right ) ^{4}+{\frac{4\, \left ( \cos \left ( bx+a \right ) \right ) ^{2}}{3}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)^5*sin(b*x+a)^4,x)

[Out]

1/b*(-1/9*sin(b*x+a)^3*cos(b*x+a)^6-1/21*sin(b*x+a)*cos(b*x+a)^6+1/105*(8/3+cos(b*x+a)^4+4/3*cos(b*x+a)^2)*sin
(b*x+a))

________________________________________________________________________________________

Maxima [A]  time = 0.990053, size = 49, normalized size = 1.07 \begin{align*} \frac{35 \, \sin \left (b x + a\right )^{9} - 90 \, \sin \left (b x + a\right )^{7} + 63 \, \sin \left (b x + a\right )^{5}}{315 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^5*sin(b*x+a)^4,x, algorithm="maxima")

[Out]

1/315*(35*sin(b*x + a)^9 - 90*sin(b*x + a)^7 + 63*sin(b*x + a)^5)/b

________________________________________________________________________________________

Fricas [A]  time = 1.68277, size = 140, normalized size = 3.04 \begin{align*} \frac{{\left (35 \, \cos \left (b x + a\right )^{8} - 50 \, \cos \left (b x + a\right )^{6} + 3 \, \cos \left (b x + a\right )^{4} + 4 \, \cos \left (b x + a\right )^{2} + 8\right )} \sin \left (b x + a\right )}{315 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^5*sin(b*x+a)^4,x, algorithm="fricas")

[Out]

1/315*(35*cos(b*x + a)^8 - 50*cos(b*x + a)^6 + 3*cos(b*x + a)^4 + 4*cos(b*x + a)^2 + 8)*sin(b*x + a)/b

________________________________________________________________________________________

Sympy [A]  time = 21.5265, size = 66, normalized size = 1.43 \begin{align*} \begin{cases} \frac{8 \sin ^{9}{\left (a + b x \right )}}{315 b} + \frac{4 \sin ^{7}{\left (a + b x \right )} \cos ^{2}{\left (a + b x \right )}}{35 b} + \frac{\sin ^{5}{\left (a + b x \right )} \cos ^{4}{\left (a + b x \right )}}{5 b} & \text{for}\: b \neq 0 \\x \sin ^{4}{\left (a \right )} \cos ^{5}{\left (a \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)**5*sin(b*x+a)**4,x)

[Out]

Piecewise((8*sin(a + b*x)**9/(315*b) + 4*sin(a + b*x)**7*cos(a + b*x)**2/(35*b) + sin(a + b*x)**5*cos(a + b*x)
**4/(5*b), Ne(b, 0)), (x*sin(a)**4*cos(a)**5, True))

________________________________________________________________________________________

Giac [A]  time = 1.14985, size = 92, normalized size = 2. \begin{align*} \frac{\sin \left (9 \, b x + 9 \, a\right )}{2304 \, b} + \frac{\sin \left (7 \, b x + 7 \, a\right )}{1792 \, b} - \frac{\sin \left (5 \, b x + 5 \, a\right )}{320 \, b} - \frac{\sin \left (3 \, b x + 3 \, a\right )}{192 \, b} + \frac{3 \, \sin \left (b x + a\right )}{128 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^5*sin(b*x+a)^4,x, algorithm="giac")

[Out]

1/2304*sin(9*b*x + 9*a)/b + 1/1792*sin(7*b*x + 7*a)/b - 1/320*sin(5*b*x + 5*a)/b - 1/192*sin(3*b*x + 3*a)/b +
3/128*sin(b*x + a)/b